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Abstract

We present a finite chain-length calculation of the rubber elasticity of an isotropic crosslinked network of freely jointed chains under affine
deformation. Whilst this is a classical calculation, the result is derived in its full tensorial structure for the first time, and new predictions of
non-Gaussian elasticity for general biaxial deformations are presented. The full tensorial rubber-elasticity derivation allows any deformation
regime to be treated, to facilitate validation with experimental data. Even though more complex many-chain effects are neglected, this theory
appears to be the only one to offer a physical explanation for negative values ofW2 observed experimentally at small strains.q 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Rubber elasticity arises when polymer chains capable of
large extensions are crosslinked together to form a network.
Such chains can be considered at varying degrees of com-
plexity [1,2]—initially as phantom, Gaussian chains, then
accounting for many-chain affects, e.g. entanglements. We
reconsider one significant feature of such networks, i.e. the
finite length of its constituent chains (i.e. a strand ofN
monomers cannot extend to a length of more thanN times
the monomer length), an effect that the very much simplify-
ing and rather successful Gaussian statistical theory does not
account for. Gaussian statistics are exact only when the
polymer chains they describe are of infinite length. In
order to capture the finite chain effect in the network,
Kuhn and Grun [3] long ago devised the inverse Langevin
approximation within the freely jointed chain model, and
obtained the leading correction to Gaussian single chain
statistics. More recently, a powerful method based on
moment calculations from the characteristic function [4]
has been developed to obtain the single end-to-end vector
distribution function [5–7], achieving encouraging agree-
ments with Monte Carlo simulations [8].

Under the assumptions of the affine deformation of junc-
tion points and the additivity of individual strand entropy,
the end-to-end vector distribution function directly leads to
the network elasticity through either a finite-chain average
or network average [1,9,10]. However, agreement with
experiment is incomplete. Alternative theoretical models

of rubber elasticity have been proposed to account for inter-
actions between chains. Models range from the constrained
junction-fluctuation [11] and primitive path [12,13] to slip-
link [14–17] and tube models [18,19]. The relative merits of
these approaches in fitting experimental data have been
reviewed by Gottlieb and Gaylord [20], who make clear
that the only real test of theory is to go beyond uniaxial
deformations. The message is somewhat mixed, as none of
the eight molecular models available was able to reproduce
all of the experimental observations over the entire experi-
mental range. A particularly striking point was that [21] a
negativeW2 (the energy density derivative with respect to
the second invariant of the deformation tensor) was observed
experimentally at small strains, but none of the models could
predict it. Computer simulations [22–25] have been helpful,
and amongst other things they confirm the negativeW2

seen in experiments [26,27]. A somewhat more generalized
method [28] obtained a good fit to experimental stress, but
still did not offer any physical origin to the negativity ofW2

found experimentally in the low strain regime.
In this paper, we return to the picture of freely jointed

chains cross-linked at junction points deforming under
affine conditions. The end-to-end vector distribution
function is derived as an expansion in inverse strand
length, which ultimately approaches those obtained earlier
[5–7]. However, the expansion facilitates the full network
average, which follows to give the elastic free energy in a
similar expansion. It is assumed that the fluctuation of the
junction points will introduce a prefactor [2], but will not
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significantly alter the expansion otherwise. The method we
use incorporates the saddle-point integration and Wick’s
theorem, and the result is obtained in its full tensorial
form, which has not been done before [10] for finite
chain-length effects. This tensorial expression is then
expressed as a function of the two invariants of the deforma-
tion tensor. The negative value ofW2 is then found. It
appears that finite chain-length is a possible physical origin
giving rise to a negativeW2. The results presented here
should be applicable to networks with medium to long
(for convergence) strand lengths at moderate or low
deformations.

An error in the widely used inverse Langevin approxi-
mation is examined and corrected. Our motivation is not to
surplant models invoking many-chain effects in rubber
elasticity, which undoubtedly exist and contribute to rubber
elasticity. The purpose of this paper is to: (i) improve a
classical model calculation on which much has been based
over the years, and give a fully tensorial form for the depen-
dence of free energy on the Cauchy strainl, since complex
deformations are the acid test of theory; (ii) show that this
simple physical effect under the simplest assumptions yields
W2 , 0, a result inaccessible to more complex models. The
last result perhaps suggests that a simple model calculation
is indeed instructive—finite chain-length effects in tandem
with many-chain effects might be of importance.

2. Single chain statistics

Consider the probability distribution functionP(R) of a
chain consisting ofN freely jointed units of lengthb, with
the end-to-end vectorR. By introducing the auxiliary field
k, it is rather trivial [29,30] to show:

P(R) ~
∫

dk e¹ ik:R sin kb
kb

� �N

(1)

Here, sinkb
kb

ÿ �N is the characteristic function for the freely
jointed chain. Its successive derivatives with respect tok
give the chain moments, from which theP(R) can be
inferred very accurately [5–7]. However, we shall present
a perturbative method here for simplicity.

Approximating the characteristic function by
exp(¹Nk2b2/6) gives rise to the usual Gaussian distribution
function, but more accurately, we can write it as a power
series expansion ink2:

sin kb
kb

� �N

¼ exp ¹ N
k2b2

6
þ

k4b4

180
þ

k6b6

2835
þ , …

" # !
(2)

which gives the probability distribution function in the form
of:

P(R) ~
∫

dk exp( ¹ N f(k)) (3)

with

f (k) ¼
i
N

k:R þ
k2b2

6
þ

k4b4

180
þ

k6b6

2835
þ … (4)

This integration can be performed within the saddle-point
approximation to give the leading correction to the Gaussian
probability. The saddle-point is found to be at:

k0 ¼ ¹
3iR
Nb2 1þ

3
5

R
Nb

� �2

þ
99
175

R
Nb

� �4

þ …
� �

(5)

To evaluate the full correction, we write the standard Taylor
expansion forf(k) about the saddle-pointk 0:

f (k) ¼ f (k0) þ
∑̀
n¼ 2

(k̃:=k)n

n!
f (k)lk0

(6)

where k̃ ¼ k ¹ k 0 measures the distance away from the
saddle-point, andlk0

denotes that all derivatives are to be
evaluated at the same saddle-pointk 0. The leading Gaussian
behaviour [1],R,N1/2 andk,N¹1/2, guides our expansion in
orders of 1/N throughout this paper. Some details of this
expansion are provided in Appendix A. Eq. (3) can be
rewritten as:

P(R)~ exp( ¹ Nf(k0))
∫

dk̃ exp ¹
Nb2

6
k̃

2
� �

exp

�
1

10N
(R2k̃

2
þ 2RiRjk̃i k̃j) 1þ

3R2

5N2b2

� �
þ

b2i
15

Rik̃i k̃
2
¹

N
180

k̃
4
b4

¹
3

35N3b2(R4k̃
2
þ 4R2RiRj k̃i k̃j)

þ
b2

105N
(R2k̃

4
þ 4RiRj k̃i k̃j k̃

2) þ …
�

ð7Þ

with summations over repeated indices implied here. The
first exponential in the integrand describes a Gaussian aver-
age which, on its own, gives the prefactor in the saddle-point
approximation; the second exponential can be expanded
into a power series ink, and the average with respect to
the Gaussian distribution is straightforward thanks to
Wick’s theorem1. The resulting probability distribution is
an asymtotic series inR2(Nb)¹2,N¹1, which can be written
in the following exponential form:

P(R)~ exp

�
¹ N

�
3
2

R
Nb

� �2

1¹
1
N

þ
2

5N2

� �
þ

9
20

R
Nb

� �4

1¹
11
5N

� �
þ

99
350

R
Nb

� �6�
þ …

�
: ð8Þ

1 Wick’s theorem states that the Gaussian average of a product can
be evaluated from the average of all possible pairings:
, ki1ki2…ki2p

. ¼
∑

all pairings , ki1ki2 . … , ki2p¹ 1
ki2p

. where , …
. indicates a Gaussian average
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Note that this probability distribution only depends on the
magnitude ofR, as the system is isotropic. The exponent is a
power series in 1/N, and for largeN, should be well approxi-
mated by the first few terms, as shown in Eq. (8). For shorter
chains, higher-order terms in the expansion will be needed
and the process becomes difficult, then the method of Refs
[4–7], which in fact is more suited to shorter chains, is more
appropriate. Nevertheless, for small corrections to Gaussian
statistics due to a finite chain length, Eq. (8) is sufficient. We
now compare it with the inverse Langevin approximation of
the literature [3], which also deals with this correction to
Gaussian statistics due to a finite chain length.

The probability distribution function given by the inverse
Langevin approximation is equivalent to taking the saddle
point value exp[f(k 0)]:

PLang(R)~ exp

�
¹ N

�
3
2

R
Nb

� �2

þ
9
20

R
Nb

� �4

þ
99
350

R
Nb

� �6�
þ …

�
, ð9Þ

the exponent of which agrees with that of Eq. (8) only
partially. In comparison, the multiplicative factors in the
exponent, e.g. (1¹ 1/N þ 2/5N2), are new and necessary
for a self-consistent approximation of the order of 1/N.
Therefore, expanding the inverse Langevin function in a
power series, e.g. [26,31], will give an incomplete correc-
tion to Gaussian results at order 1/N. The error in the inverse
Langevin approximation comes mainly from the use of Stir-
ling’s approximation, which can be viewed as a saddle point
approximation of a Gamma function integral.

In Eqs. (8) and (9), we have non-Gaussian probability
distributions, which contain the leading order (in 1/N) cor-
rections due to the finite chain-length. However, the exact
expectation values are available (by, e.g. differentiating the
characteristic function[4]) for a freely jointed chain:〈R2〉 ¼

Nb2 and〈R4〉 ¼ (5N2 ¹ 2N)b4/3, etc. which account for the
finite chain length effects. These expectation values can be
verified with the probability distribution of Eq. (8) by
expanding its non-Gaussian parts and utilizing Wick’s the-
orem in the subsequent integrals, but not with that of Eq. (9).

3. Network average

To analyse the mechanical properties of the network, we
now consider a general affine deformationl, which deforms
a span between junction points of the network fromR0 to R
according to the relationR ¼ l.R0. This defines the
Cauchy–Green deformation tensorl:

lab ¼ ]Ra=]R0b (10)

The elastic free energy per network strand of the distorted
state is then given by the quenched average of lnP(R) over
the distribution of strandsP(R0):

Fs(l) ¼ ¹ kBT lnP(R)h i0 (11)

where〈…〉0 indicates the average with respect to the prob-
ability distribution function before deformation,P(R0); kBT
is the unit of thermal energy. This implies the following
average:

Fs
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3
2Nb2 1¹

1
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2
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However, this average over a non-Gaussian distribution is
inconvenient, and we choose to rewrite Eq. (8) forP(R0) as:

P(R0)~ exp ¹
3
2

R2
0

Nb2 1¹
1
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2
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3
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which is a Gaussian distribution with a non-trivial multi-
plicative factor. Thus, the average in Eq. (12) becomes a
Gaussian average of a polynomial inR, and Wick’s theorem
can again be employed after substitutingRa ¼ lab R0b to
give the rubber-elastic contribution to the free energy
densityW ¼ ns Fs:

W
nskBT

¼
1
2

1¹
1
N

þ
2

5N2

� �
lij lij þ

1
20N

1¹
13
5N

� �
3 (lij lij )2 þ 2lij llj llklik

� �
þ

11
1050N2

�
(lij lij )3 þ 6lij lij llpllqlmplmq

þ 8lij liqllj llplmplmqÿ þ … ð14Þ

where we have dropped the irrelevant constant, andns is the
average number of chain strands per unit volume. Note
that thel4 terms start at order 1/N, the l6 terms start at
order 1/N2, etc.

Eq. (14) gives the full tensorial free energy with the finite
chain-length effect, and it can be viewed as an extension of
the previous work on uniaxial deformations [10]. Our ori-
ginal motivation for such a tensorial formulation is partly
that finite chain-length effects are likely to be qualitatively
important in nematic elastomers which, being anisotropic,
make the tensorial formulation crucial. However, there are
also interesting conclusions for isotropic rubber elasticity,
as we show below.

The deformation of a homogeneous, isotropic and elastic
material is characterised by a symmetric deformation tensor
l, the diagonalisation of which leaves three principal strains
l1, l2, l3 along a set of orthogonal axes. If we further
assume incompressibility, which imposesl1, l2, l3 ¼ 1,
the elastic free energy is then a function of the two
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remaining rotational invariants of the deformation tensor
[32,33]:

I1 ¼
∑3

i ¼ 1
l2

i , I2 ¼
∑3

i ¼ 1
l¹ 2

i , W¼ W(I1, I2) (15)

Thus, biaxial deformation is the most general deformation,
and uniaxial deformation is only a special case. The most
strict test of a physical model is therefore only obtained
under the former [20]. Rewriting Eq. (14) in terms ofI 1

and I 2, we have:

W
G0

¼
1
2

1¹
1
N

þ
2

5N2

� �
I1 þ

1
20N

1¹
13
5N

� �
[3I2

1 ¹ 4I2]

þ
11

350N2[5I3
1 ¹ 12I1I2] þ … ð16Þ

whereG0 ¼ nskBT. The derivativesWi ¼ ]W/]I i are:

W1

G0
¼

1
2

1¹
1
N

þ
2

5N2

� �
þ

3
10N

1¹
13
5N

� �
I1

þ
11

350N2[15I2
1 ¹ 12I2] þ … ð17Þ

W2

G0
¼ ¹

1
5N

1¹
13
5N

� �
¹

66I1

175N2 þ … (18)

Experimentally, Kawabata and co-workers [21,34,35] have
studied the behaviour of rubbers under multiaxial deforma-
tion. Special attention was paid to small deformations, at
which experimental error was prevalent. While their results
can be well fitted by some theoretical models at large
strains, no previously available model can explain the nega-
tive W2 observed at low strains [20]. We see from Eq. (18)
that the affine assumption with finite chain-length can
clearly give rise to a negativeW2 at order 1/N and higher.
For a typical value of N ¼ 10, we would have
W2,¹0.03G0, and for shorter chains we would expectW2

to be more negative. This is about the same order of magni-
tude as that measured in Kawabata et al. [21], which gave an
average of,¹0.1G0 with a rather large uncertainty of more
than 0.05G0. The experimentalN is difficult to estimate, and
the sample is almost certain to have polydisperseN. Quali-
tatively, the decrease inW1 with increasingI 2, as predicted
in Eq. (17) at order 1/N2, can be observed in the data from
Gottlieb and Gaylord [20], and Kawabata et al. [21]. The
experimental uncertainty prevents a more detailed compar-
ison, and it would therefore be interesting to have more
precise data forW1,2 at I 1,2,3 and their variations withN.
At large deformations, beyond the region of validity of this
model (mainly due to the breakdown of affine deformation
assumption),W2 becomes positive. Comparison with com-
puter simulations [26] is hampered by slight differences in
adopted models. In Termonia [26,27], affine deformation
was not strictly enforced; the inverse Langevin approxi-
mation giving rise to order 1/N error in free energy (as
discussed earlier) was employed. However, the message
of this paper is clear, i.e. that finitely extensible chains,

even under the simplest approximation, can account for
the negativeW2 observed experimentally. Our theory also
predicts that: (i) the absolute value ofW2 increases with
increasing crosslink densities or decreasingN and; (ii) for
largeN, W2 should approachG0/5N. More complex models,
e.g. involving entanglements, may be more successful if
they include this physical ingredient.

Finally, we derive an expansion expression for small
strains. We writel ij ¼ d ij þ [ ij, and the constant volume
condition requires Det(l ij) ¼ 1, which leads to:

[ii ¼ [ij [ij =2þ O( [3 ) (19)

via the Cayley–Hamilton theorem. Here, in writing Eq. (19),
we have assumed the matrix[ ij to be symmetric. It is an
assumption without loss of generality since the anti-
symmetric part of the matrix gives rise to a net rotation,
which leaves the system invariant2. Thus, the above elastic
energy expression, Eq. (14), can be rewritten as (again
dropping the constant term):

W([) ¼ G0 [ij [ij 1þ
2

5N
þ O

1
N2

� �� �
þ … (20)

This now becomes an expansion in both[ ij and 1/N. As
expected, we indeed see the 1/N corrections to the usual
Gaussian behaviourWGau( [ ) ¼ G0 [ ij [ ij. Cubic,
quartic and even higher order (in strain) corrections are
also present, but are smaller by increasing powers of 1/N.
With N being typically of the order 20 for rubber and
possibly less for liquid-crystalline elastomers thus far
studied, the correction can be quite significant even at
small deformations.

4. Summary

We have presented a perturbation method of deriving the
end-to-end vector distribution function of a freely-jointed
chain. By performing a network average, we derive a fully
tensorial expression for the rubber elasticity of a crosslinked
network with finite chain-length effects. The elastic free
energy is then obtained as an explicit function ofI 1 and
I 2, the two invariants of the deformation tensor. The main
results of the paper are: (i) the error in the inverse Langevin
approximation is examined; (ii) a tensorial form of the finite
chain-length effects is derived; and (iii) the finite length of
polymer chains can give rise to the negativeW2, observed
experimentally. The expansions in the small deformation
tensor [ and inverse strand length 1/N are performed.
The deviation from the usual Gaussian behaviour is
obtained. Work in progress generalises the method pre-
sented here to nematic networks.

2 In nematic elastomers there is an elastic-nematic coupling involving the
antisymmetric component of[ and we cannot make this simplification
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Appendix A Taylor expanding f(k)

By expanding around the saddle pointk 0, the first deri-
vative term is absent. Noting:

(k̃:=k)nf (k)lk0
¼

]nf
]ki…]kj

lk0
k̃i…k̃j (A1)

we start with the second order term:

(k̃:=k)2f (k)lk0
¼

]2f
]ki]kj

lk0
k̃i k̃j ¼

b2

3
k̃

2

¹
1

5N2(R2k̃
2
þ 2RiRjk̃i k̃j) 1þ

6R2

5N2b2

� �
þ

6
35N4b2(R4k̃

2
þ 4R2RiRjk̃i k̃j) þ O(N¹ 4) ðA2Þ

and then consider higher order terms in the Taylor
expansion:

(k̃:=k)3f (k)lk0
¼ ¹

2b2i
5N

Rik̃i k̃
2

1þ
3R2

5N2b2

� �
þ

8i

35N3[3R2Rik̃i k̃
2
þ 2(Rik̃i)3] þ O(N¹ 4) ðA3Þ

(k̃:=k)
4f (k)lk0

¼
2
15

k̃
4
b4 ¹

8b2

35N2(R2k̃
4
þ 4RiRj k̃i k̃j k̃

2)

þ O(N¹ 4) ðA4Þ

(k̃:=k)
5f (k)lk0

¼ ¹
16b4i
21N

(Rik̃i k̃
4) þ O(N¹ 4) (A5)

(k̃:=k)6f (k)lk0
¼

16
63

b6k̃
6
þ O(N¹ 4) (A6)
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